Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: covidwho-2217486

ABSTRACT

Background: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital-onset COVID-19 infections (HOCIs; detected ≥48 hr from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on the incidence of probable/definite hospital-acquired infections (HAIs), was evaluated. Results: A total of 2170 HOCI cases were recorded from October 2020 to April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95% CI 0.85-3.01; p=0.14) or rapid (0.85, 0.48-1.50; p=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8 and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2 and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis, there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. Conclusions: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. Funding: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. Clinical trial number: NCT04405934.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , Infection Control/methods , Cross Infection/epidemiology , Cross Infection/prevention & control , Hospitals
3.
Sci Rep ; 11(1): 24183, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585792

ABSTRACT

COVID-19 has restricted singing in communal worship. We sought to understand variations in droplet transmission and the impact of wearing face masks. Using rapid laser planar imaging, we measured droplets while participants exhaled, said 'hello' or 'snake', sang a note or 'Happy Birthday', with and without surgical face masks. We measured mean velocity magnitude (MVM), time averaged droplet number (TADN) and maximum droplet number (MDN). Multilevel regression models were used. In 20 participants, sound intensity was 71 dB for speaking and 85 dB for singing (p < 0.001). MVM was similar for all tasks with no clear hierarchy between vocal tasks or people and > 85% reduction wearing face masks. Droplet transmission varied widely, particularly for singing. Masks decreased TADN by 99% (p < 0.001) and MDN by 98% (p < 0.001) for singing and 86-97% for other tasks. Masks reduced variance by up to 48%. When wearing a mask, neither singing task transmitted more droplets than exhaling. In conclusion, wide variation exists for droplet production. This significantly reduced when wearing face masks. Singing during religious worship wearing a face mask appears as safe as exhaling or talking. This has implications for UK public health guidance during the COVID-19 pandemic.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Face , Masks , Singing/physiology , Adult , COVID-19/epidemiology , COVID-19/virology , Cross-Sectional Studies , Exhalation/physiology , Female , Humans , Male , Pandemics/prevention & control , Risk Factors , SARS-CoV-2/physiology , Virus Shedding/physiology
5.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446866

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
7.
Lancet Infect Dis ; 21(9): 1246-1256, 2021 09.
Article in English | MEDLINE | ID: covidwho-1180123

ABSTRACT

BACKGROUND: Emergence of variants with specific mutations in key epitopes in the spike protein of SARS-CoV-2 raises concerns pertinent to mass vaccination campaigns and use of monoclonal antibodies. We aimed to describe the emergence of the B.1.1.7 variant of concern (VOC), including virological characteristics and clinical severity in contemporaneous patients with and without the variant. METHODS: In this cohort study, samples positive for SARS-CoV-2 on PCR that were collected from Nov 9, 2020, for patients acutely admitted to one of two hospitals on or before Dec 20, 2020, in London, UK, were sequenced and analysed for the presence of VOC-defining mutations. We fitted Poisson regression models to investigate the association between B.1.1.7 infection and severe disease (defined as point 6 or higher on the WHO ordinal scale within 14 days of symptoms or positive test) and death within 28 days of a positive test and did supplementary genomic analyses in a cohort of chronically shedding patients and in a cohort of remdesivir-treated patients. Viral load was compared by proxy, using PCR cycle threshold values and sequencing read depths. FINDINGS: Of 496 patients with samples positive for SARS-CoV-2 on PCR and who met inclusion criteria, 341 had samples that could be sequenced. 198 (58%) of 341 had B.1.1.7 infection and 143 (42%) had non-B.1.1.7 infection. We found no evidence of an association between severe disease and death and lineage (B.1.1.7 vs non-B.1.1.7) in unadjusted analyses (prevalence ratio [PR] 0·97 [95% CI 0·72-1·31]), or in analyses adjusted for hospital, sex, age, comorbidities, and ethnicity (adjusted PR 1·02 [0·76-1·38]). We detected no B.1.1.7 VOC-defining mutations in 123 chronically shedding immunocompromised patients or in 32 remdesivir-treated patients. Viral load by proxy was higher in B.1.1.7 samples than in non-B.1.1.7 samples, as measured by cycle threshold value (mean 28·8 [SD 4·7] vs 32·0 [4·8]; p=0·0085) and genomic read depth (1280 [1004] vs 831 [682]; p=0·0011). INTERPRETATION: Emerging evidence exists of increased transmissibility of B.1.1.7, and we found increased virus load by proxy for B.1.1.7 in our data. We did not identify an association of the variant with severe disease in this hospitalised cohort. FUNDING: University College London Hospitals NHS Trust, University College London/University College London Hospitals NIHR Biomedical Research Centre, Engineering and Physical Sciences Research Council.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Severity of Illness Index , Whole Genome Sequencing , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , London , Male , Middle Aged , Phylogeny , United Kingdom , Viral Load , Virus Shedding
8.
Clin Infect Dis ; 72(4): 690-693, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1087709

ABSTRACT

Coronavirus disease 2019 (COVID-19) can cause deadly healthcare-associated outbreaks. In a major London teaching hospital, 66 of 435 (15%) COVID-19 inpatient cases between 2 March and 12 April 2020 were definitely or probably hospital-acquired, through varied transmission routes. The case fatality was 36%. Nosocomial infection rates fell following comprehensive infection prevention and control measures.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Disease Outbreaks , Hospitals, Teaching , Humans , London/epidemiology , Retrospective Studies , SARS-CoV-2
9.
Science ; 370(6522): 1339-1343, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-913669

ABSTRACT

Zoonotic introduction of novel coronaviruses may encounter preexisting immunity in humans. Using diverse assays for antibodies recognizing SARS-CoV-2 proteins, we detected preexisting humoral immunity. SARS-CoV-2 spike glycoprotein (S)-reactive antibodies were detectable using a flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. They were predominantly of the immunoglobulin G (IgG) class and targeted the S2 subunit. By contrast, SARS-CoV-2 infection induced higher titers of SARS-CoV-2 S-reactive IgG antibodies targeting both the S1 and S2 subunits, and concomitant IgM and IgA antibodies, lasting throughout the observation period. SARS-CoV-2-uninfected donor sera exhibited specific neutralizing activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes. Distinguishing preexisting and de novo immunity will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunity, Humoral , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , COVID-19/blood , Epitope Mapping , Female , HEK293 Cells , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Zoonoses/blood , Viral Zoonoses/immunology , Young Adult
10.
Epilepsy Behav ; 115: 107602, 2021 02.
Article in English | MEDLINE | ID: covidwho-908849

ABSTRACT

In this cohort study, we aim to compare outcomes from coronavirus disease 2019 (COVID-19) in people with severe epilepsy and other co-morbidities living in long-term care facilities which all implemented early preventative measures, but different levels of surveillance. During 25-week observation period (16 March-6 September 2020), we included 404 residents (118 children), and 1643 caregivers. We compare strategies for infection prevention, control, and containment, and related outcomes, across four UK long-term care facilities. Strategies included early on-site enhancement of preventative and infection control measures, early identification and isolation of symptomatic cases, contact tracing, mass surveillance of asymptomatic cases and contacts. We measured infection rate among vulnerable people living in the facilities and their caregivers, with asymptomatic and symptomatic cases, including fatality rate. We report 38 individuals (17 residents) who tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive, with outbreaks amongst residents in two facilities. At Chalfont Centre for Epilepsy (CCE), 10/98 residents tested positive: two symptomatic (one died), eight asymptomatic on weekly enhanced surveillance; 2/275 caregivers tested positive: one symptomatic, one asymptomatic. At St Elizabeth's (STE), 7/146 residents tested positive: four symptomatic (one died), one positive during hospital admission for symptoms unrelated to COVID-19, two asymptomatic on one-off testing of all 146 residents; 106/601 symptomatic caregivers were tested, 13 positive. In addition, during two cycles of systematically testing all asymptomatic carers, four tested positive. At The Meath (TM), 8/80 residents were symptomatic but none tested; 26/250 caregivers were tested, two positive. At Young Epilepsy (YE), 8/80 children were tested, all negative; 22/517 caregivers were tested, one positive. Infection outbreaks in long-term care facilities for vulnerable people with epilepsy can be quickly contained, but only if asymptomatic individuals are identified through enhanced surveillance at resident and caregiver level. We observed a low rate of morbidity and mortality, which confirmed that preventative measures with isolation of suspected and confirmed COVID-19 residents can reduce resident-to-resident and resident-to-caregiver transmission. Children and young adults appear to have lower infection rates. Even in people with epilepsy and multiple co-morbidities, we observed a high percentage of asymptomatic people suggesting that epilepsy-related factors (anti-seizure medications and seizures) do not necessarily lead to poor outcomes.


Subject(s)
COVID-19/epidemiology , Epilepsy/epidemiology , Infection Control/trends , Long-Term Care/trends , Residential Facilities/trends , Adult , Aged , Aged, 80 and over , COVID-19/therapy , Cohort Studies , Comorbidity , Epilepsy/therapy , Female , Humans , Infection Control/methods , Male , Middle Aged , Treatment Outcome , United Kingdom/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL